Abstract

One important application of clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas 9 is the development of knock-out cell lines, specifically to study the function of new genes/proteins associated with a disease, identified during the genetic diagnosis. For the development of such cell lines, two major issues have to be untangled: insertion of the CRISPR tools (the Cas9 and the guide RNA) with high efficiency into the chosen cells, and restriction of the Cas9 activity to the specific deletion of the chosen gene. The protocol described here is dedicated to the insertion of the CRISPR tools in difficult to transfect cells, such as muscle cells. This protocol is based on the use of lentiviruses, produced with plasmids publicly available, for which all the cloning steps are described to target a gene of interest. The control of Cas9 activity has been performed using an adaptation of a previously described system called KamiCas9, in which the transduction of the cells with a lentivirus encoding a guide RNA targeting the Cas9 allows the progressive abolition of Cas9 expression. This protocol has been applied to the development of a RYR1-knock out human muscle cell line, which has been further characterized at the protein and functional level, to confirm the knockout of this important calcium channel involved in muscle intracellular calcium release and in excitation-contraction coupling. The procedure described here can easily be applied to other genes in muscle cells or in other difficult to transfect cells and produce valuable tools to study these genes in human cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.