Abstract

Kinetics of the liquid phase hydrogenolysis of glycerol was investigated over 35 wt % Cu/MgO catalyst in a slurry batch reactor. The power law and Langmuir–Hinshelwood–Hougen–Watson (LHHW) models were tried to fit the experimental data. To develop the kinetic model, a new reaction mechanism is proposed. To simulate the experimental concentration–time data, the set of differential equations were developed and solved numerically by using ode23 stiff system coupled with the genetic algorithm optimization technique. Kinetic parameters were estimated by minimizing the residual sum of squares between the predicted and experimental concentrations of glycerol, 1,2-propanediol (1,2-PDO), and ethylene glycol (EG). Power law showed that hydrogenolysis of glycerol over 35 wt % Cu/MgO catalyst followed the overall reaction order of 1.2 with respect to glycerol with an activation energy of 84.9 kJ/mol. The LHHW model satisfactorily correlated the rate data, and this model showed good fit between the experimental and calculated concentration of glycerol as well as products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call