Abstract

Aspergillus section Flavi is a heterogeneous fungal cluster including some of the most economically important Aspergillus species. The section is comprised of toxigenic and nontoxigenic aspergilli that are phenotypically undistinguishable. The aim of this study was to develop a genetic marker specific to Aspergillus section Flavi on the whole. Based on inter-simple sequence repeat (ISSR) fingerprinting profiles of major Aspergillus section Flavi members, a sequence-characterized amplified region (SCAR) marker was identified. Primers were designed in the conserved regions of the SCAR marker and were utilized in a PCR for concurrent identification of major members of the section. The detection level of the SCAR-PCR was found to be 0·1ng purified DNA, and when applied to 45 naturally contaminated food samples, 28 samples were found infected with Aspergillus section Flavi members. The present SCAR-PCR is rapid and less cumbersome unlike conventional identification techniques. Identification of Aspergillus section Flavi members is important owing to their impact on human health and economy. The ISSR-based SCAR-PCR developed in this study is superior over the other existing Aspergillus section Flavi detection systems due to its simplicity and minimal requirement of sample handling. This PCR could be a supplementary strategy to time-consuming and rather ambiguous conventional polyphasic detection techniques and a reliable tool for high-throughput sample analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.