Abstract

Isotactic polypropylene (PP) composite films were developed, with incorporation of CaCO3 particles as active filler. Stearic acid was used for the surface treatment of CaCO3 to provide composite films having improved mechanical, thermal and barrier properties against oxygen as well as water vapor, in comparison to neat PP films. The filler was melt mixed with PP in a twin-screw extruder, and the films produced through melt blowing. A slight reduction in T g values of the filled PP films was observed, along with an increase in the overall crystallization extent relative to neat PP films. X-ray diffraction data confirmed that the CaCO3 particles served as a β-nucleating agent capable of promoting the formation of the β-crystalline phase of PP and reducing the spherulite size, with stearic acid-coated CaCO3 being most effective in promoting these features. Exposing the films to microwave radiation altered their properties; at low irradiation power, the T g values and the degree of β-crystallization were enhanced, and barrier properties against oxygen and water vapor showed improvements. In contrast, no significant changes in the appearance of the film surface were evident highlighting the potential of these PP-based composite films in microwave packaging applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.