Abstract

AbstractThis paper presents academic efforts aimed at integrating methodologies associated with the use of mobile devices, the potential of the Internet of Things (IoT), and the role of experimental education in civil engineering. This integration is developed by encompassing the use of sensors, microcontrollers, civil engineering problems, app development, and fabrication. The proposal provides an explorative way of approaching the numerous possibilities that arise in civil engineering when it comes to IoT, automation, monitoring, and control of civil engineering processes. The used tools represent accessible and affordable ways for application in classrooms and in educational laboratories for beginners. The initial explorative approach implies the fusion of three realms: (i) the phenomenology and mathematics of varied civil engineering problems; (ii) the systematic use of digital fabrication technologies and electronic prototyping platforms; and (iii) the creative and visual way of developing codes provided by block‐based development platforms. This integration of perspectives is an attempt of approaching civil engineering mathematics to technology and arts with a rigorous scientific approach. A set of different examples is presented with the corresponding findings in educational terms. These examples are developed in a constructive, scaffolding‐based way and may contribute as a potential alternative in the development of open‐source teaching labs in civil engineering schools.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call