Abstract
The iodine (I) electrode involving two-electron transfer chemistry by converting between I+ and I-, has the potential to deliver theoretically doubled capacity and higher working voltage platforms, thus achieving higher energy density. However, owing to the slow kinetics of the cascade two-electron transfer reactions, the system suffers from large overpotentials and low power density, especially at high working currents and low temperatures. Here, an inverse-opal-structured cobalt sulfide@nitrogen-doped-carbon (Co9S8@NC) catalyst with unique charge-deficient states is developed to promote the reaction kinetics of the I-/I+ electrode. The charge-deficient Co9S8@NC catalyst not only enables strong physicochemical adsorption with the iodine species but also significantly reduces the activation energy and interfacial charge transfer resistance of the cascade I+/I0/I- conversion reaction. Consequently, the prototypical Zn‖I+/I0/I- battery equipped with the Co9S8@NC catalyst can deliver a high energy density of 554 Wh kg-1 and a stable cycle life of 5000 cycles at 30°C. Moreover, at a subzero temperature of -30 °C, the battery can exhibit enhanced kinetics and a high power density of 1514 W kg-1, high energy density of 485 Wh kg-1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.