Abstract

This study aimed to synthetize, characterize and evaluate the antimicrobial properties of silver nanoparticles to be used in the development of a root intracanal formulation. Silver nanoparticles (AgNPs) were obtained by reduction of silver nitrate with sodium borohydride and characterized by UV-Visible spectrophotometry, scanning electron microscopy (SEM) and dynamic light scattering (DLS). The antimicrobial activity of nanoparticle formulation was evaluated by determinations of the minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) against different bacterial species by the microdilution method, according to recommendations of the Clinical and Laboratory Standards Institute (CLSI). Three potential vehicles, hydroxyethylcellulose, Carbomer and polyethylene glycol were tested as carriers for formulations containing AgNPs. The efficiency of the synthesis method chosen to produce AgNPs was demonstrated by four characterization techniques. The nanoparticles showed antibacterial activity against all species tested. Incorporation of AgNPs into all experimental vehicles produced stable formulations but the one in hydroxyethylcellulose presented better physical proprieties. The results indicate that silver nanoparticles are potential antiseptic agents to be used in root canals and incorporation in adequate vehicles may favor a broader application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.