Abstract

An optimized vip3A gene, designated as vip3A* was chemically synthesized and a thi1 gene chloroplast transit peptide coding sequence was attached to its 5' end to produce the tvip3A*. vip3A* and tvip3A* genes were transformed into Gossypium hirsutum cv. Zhongmiansuo35. Of 42 independent transformants, 36 were positive for the vip3A* or tvip3A* gene. Four independent transgenic T1 lines with single-copy insertions and unchanged phenotypes (CTV1 and CTV2 for tvip3A*, and CV1 and CV2 for vip3A*) were selected by Southern blotting, and subjected to an insect bioassay and field assessment. Four homozygous T2 transgenic lines were then selected and the amount of expressed Vip3A* protein was determined by western blotting and ELISA. The protein concentrations of CTV1 and CTV2 were about three-fold higher than those of CV1 and CV2. As expected, the Vip3A* protein of CTV1 and CTV2 were transported to the chloroplasts, where they accumulated. The Vip3A* protein concentration in the chloroplasts of CTV1 and CTV2 was about 15-fold of that of CV1 and CV2. All four transgenic lines showed 100% mortality against fall armyworm (Spodoptera frugiperda) and beet armyworm (Spodoptera exigua) by insect bioassay. Moreover, CTV1 and CTV2 exhibited 100% mortality against cotton bollworm (CBW, Helicoverpa zea), whereas CV1 and CV2 showed 75.0% and 72.5% mortality against CBW, respectively. The field bioassay indicated that CTV1 and CTV2 were more resistant to CBW than CV1 and CV2. Our results suggest that the two tvip3A* transgenic lines (CTV1 and CTV2) can be used to develop insect-resistant cultivars and could be used as a resource for raising multi-toxins-expressing transgenic cotton.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call