Abstract

In the last years, the growing attention towards environmental sustainability and circular economy has led to a renewed interest in the use of eco-friendly and recyclable materials in various sectors.Developing innovative dye sensitized solar cells (DSSCs) based on microbial pigments, is very important to meet the demands of sustainable devices. Microbial extracts obtained from Talaromyces atroroseus GH2, Arthrobacter bussei CP30 and Paracoccus bogoriensis BOG6 cultivations, and characterized by HPLC-DAD-ESI-MS analyses, have been used in this work for this purpose. The extracted pigments were tested to evaluate their suitability as photosensitizers through co-sensitization method. UV–vis measurements were carried out to determine the absorbance intensity, while Photoelectrochemical and Electrochemical Impedance Spectroscopy (EIS) analyses were applied to evaluate the devices' photovoltaic parameters and impedance characteristics. The best device, obtained by the co-sensitization of the dyes produced by Talaromyces atroroseus GH2/Paracoccus bogoriensis BOG6, exhibited a Jsc of 1.59 mA/cm2, Voc of 0.35 V, FF of 0.62, and a PCE of 0.34 %. This study highlights the potential of microbial-derived pigments in the development of DSSCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.