Abstract

With the recent increase in CubeSats’ ability to undertake complex and advanced missions, they are being considered for missions such as constellations, which demand high development efficiency. From a satellite interface perspective, productivity can be maximized by implementing a flexible modular structural platform that promotes easy reconfigurability during the integration and testing phase. Thus, the structural design of a CubeSat plays a crucial role in facilitating the satellite integration process. In most cases, the mechanical interface implemented between the primary load-supporting structure and internal satellite subassemblies affects the speed and efficiency of satellite integration by adding or reducing complexity. Most CubeSat structural designs use stacking techniques to mount PCBs onto the primary structure using stacking rods/screws. As a result, the internal subsystems are interconnected. This conventional interface method is observed to increase the number of structural parts, while increasing complexity during integration. In this study, flexible 3U and 1U CubeSat platforms are developed, based on the slot concept. This innovative mounting design provides a simple method of mounting PCBs into the slots. The concept is evaluated and verified for its feasibility for mass production applications. Count and complexity analysis is carried to evaluate the proposed design against the conventional type of structural interface methods. The assessment reveals that this new concept demonstrates a significant improvement in the efficiency of the mass production process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.