Abstract

The maxillary vibrissal pad is a unique, richly innervated sensory apparatus. It is highly evolved in the rodent that it constitutes a major source of sensory information to the somatosensory cortex. In this report, indocarbocyanine tracing and immunofluorescence were used to study the embryonic and early neonatal development of innervation to maxillary vibrissal follicles in mice. The first sign of vibrissal follicle innervation occurred at embryonic day 12 (E12), when the lateral nasal and maxillary processes were penetrated by nerve branches with small terminal plexuses assuming the positions of vibrissal follicle primordia. Between E13 and E15, the nerve plexuses at the presumptive follicles grew in size and became more numerous with no signs of specific receptor subtype formation. By E17, the nerve plexuses had grown further in size and the region-specific receptor subtype specification developed. At birth (P0), the superficial vibrissal nerves began to innervate the apical part of the inner conical body, whereas the deep vibrissal nerve gave off the recurrent cavernous branches. At P3, all of the different sets of receptor subtypes had regional distributions, densities and morphologies comparable to those described in adult mice. A 3-day old mouse had all complements of sensory receptors necessary for somatosensory transduction as revealed not only by neuroanatomic tracing but also with immunofluorescence for several markers of neurosensory differentiation. Our data reveal a hitherto unknown time table for the development of peripheral sensory receptors in the vibrissal follicles. This time table parallels that of their central targets in the somatosensory barrel cortex, which develops at P4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.