Abstract
IntroductionCompared to intravenous administration, intratumoral drug administration enables the direct delivery of drugs to tumors and mitigates the systemic absorption of drugs and associated drug-induced side effects. However, intratumoral drug administration presents several challenges. The high interstitial fluid pressure (IFP) of the tumor prevents the retention of drugs within the tumor; thus, significant amounts of the drugs are absorbed systemically through the bloodstream or delivered to non-target sites. To solve this problem, in this study, a drug-enclosed needle-type starch implant was developed that can overcome IFP and remain in the tumor.MethodsInjectable needle-type starch implants (NS implants) were prepared by starch gelatinization and drying. The structure, cytotoxicity, and anticancer effects of the NS implants were evaluated. Biodistribution of NS implants was evaluated in pork (in vitro), dissected liver (ex vivo), and 4T1 tumors in mice (in vivo) using a fluorescence imaging device.ResultsThe prepared NS implants exhibited a hydrogel structure after water absorption. NS implants showed effective cytotoxicity and anticancer effects by photothermal therapy (PTT). The NS implant itself has sufficient strength and can be easily injected into a desired area. In vivo, the NS implant continuously delivered drugs to the tumor more effectively and uniformly than conventional hydrogels and solutions.ConclusionThis study demonstrated the advantages of needle-type implants. An injectable NS implant can be a new formulation that can effectively deliver drugs and exhibit anticancer effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.