Abstract

In the case of damp and wet pipes, pipe inspection robots using pneumatic actuators offer advantages such as no electrical leakage and short circuit. In the previous study, a robot consisting of sliding/bending mechanisms using parallel arranged three extension type flexible pneumatic actuators and two holding mechanisms was successfully developed. In order to use the robot in thinner pipe, a novel and simpler propulsion mechanism utilising the difference of frictional force moving forward and backward are proposed and tested in this work. There are two mechanisms, which are “wriggling type” and “cilia type”. The “wriggling type” mechanism moves forward by wriggling its body while the “cilia type” mechanism moves by using plate type cilia that covered on the mechanism. Both mechanisms have been tested in the pipeline. As a result, it can be confirmed that the cilia type propulsion mechanism can travel in the pipe with accumulated water. It can be found that the mechanism can easily travel through corners while twisting its body by giving bending motion toward any direction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call