Abstract

BackgroundThe minipig has been used for research in various fields of medicine, even in orthopedics. Though previous studies have already suggested other methods to create osteoporotic bone, those methods had some disadvantages for taking time and efforts. Therefore, we aimed to generate osteoporotic proximal humerus and proximal femur of minipig using EDTA solution and validate their properties through dual energy X-ray absorptiometry (DEXA), micro-CT study, histological and biomechanical ways.MethodsSix minipigs were used. Out of a total of 12 proximal humerus (PH) and 12 proximal femurs (PF), 6 PH and 6 PF were used as the decalcified group and the opposite side as the non-decalcified group. In vitro decalcification with Ca-chelating agents (0.5 M EDTA solution, pH 7.4) was used. Area BMD (aBMD) was measured using DEXA, Volumetric BMD (vBMD), and microstructure were measured using micro-CT. Universal testing machine was used to measure ultimate load to failure (ULTF). Each group was compared using two types of suture anchors (all-suture anchor, ASA, and conventional screw type anchor, CA).ResultsThere was a significant difference in aBMD and cortical thickness (aBMD: decalcified, 0.433 ± 0.073 g/cm2, undecalcified, 0.962 ± 0.123 g/cm2, p < 0.001; cortical thickness: decalcified, 0.33 ± 0.34 mm, undecalcified, 1.61 ± 0.45 mm, p < 0.001). In the case of ASA, the ULTF was significantly lower in the decalcified group (decalcified: 176.6 ± 74.2 N, non-decalcified: 307.7 ± 116.5 N, p = 0.003). In the case of CA, there was no significant difference (decalcified: 265.1 ± 96.0 N, undecalcified: 289.4 ± 114.5 N, p = 0.578).ConclusionWe demonstrated that decalcification with EDTA solution significantly decreased aBMD, vBMD, and cortical thickness. Decalcified minipig bone using EDTA resulted in similar biomechanical properties as osteoporotic human bone with respect to anchor pull-out.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.