Abstract
Because of the conventional bioimaging methods, including ultrasound and X-ray examinations often lack accuracy and sensitivity in the early diagnosis, as a heterogeneous subtype of breast cancer, it remains an urgent need to develop efficaciously and sensitively diagnostic drivers of triple negative breast cancer (TNBC). The overexpression of c-mesenchymal epithelial transition-factor (c-Met) is associated with the basal subtype of breast carcinoma and linked with decreased survival rate of TNBC patients. Here, we have synthesized a dual-modal nanoprobe with luminescence imaging in the bio-window of near infrared II region (NIR II, 1000–1700) and magnetic resonance imaging (MRI) performances. After c-Met targeting binding protein decoration, this Fe3O4@mSiO2-ICG/cMBP had outstanding size stability and preeminent biocompatibility. Meaningfully, it presented effective TNBC cells recognition in vitro. Besides, after caudal-vein injection of this nanoprobe, both NIR II luminescence imaging and MRI demonstrated that it can more efficiently concentrated in metastatic TNBC tumors in comparison with Fe3O4@mSiO2-ICG and clinical used Gd-DTPA. Meanwhile, the core–shell nanoprobes also showed negligible toxicity in vivo. All results suggested that our cMBP modified nanocomposite could provide a fascinating and efficient non-invasive diagnostic tool for TNBC detection in clinic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.