Abstract
Metal oxides containing La, Mn, and Co cations can catalyze oxygen reduction reactions (ORRs) in electrochemical processes. However, these materials require carbon support and optimal interactions between both compounds to be active. In this work, two approaches to prepare composites of La-Mn-Co-based compounds over carbon xerogel were developed. Using sol-gel methods, either the metal-based material was deposited on the existing carbon xerogel or vice versa. The metal oxide selected was the LaMn0.7Co0.3O3 perovskite, which has good catalytic behavior and selectivity towards direct ORRs. All the as-prepared composites were tested for ORRs in alkaline liquid electrolytes and characterized by diverse physicochemical techniques such as XRD, XPS, SEM, or N2 adsorption. Although the perovskite structure either decomposed or failed to form using those in situ methods, the materials exhibited great catalytic activity, which can be ascribed to the strengthening of the interactions between oxides and the carbon support via C-O-M covalent bonds and to the formation of new active sites such as the MnO/Co heterointerfaces. Moreover, Co-Nx-C species are formed during the synthesis of the metal compounds over the carbon xerogel. These species possess a strong catalytic activity towards ORR. Therefore, the composites formed by synthesizing metal compounds over the carbon xerogel exhibit the best performance in the ORR, which can be ascribed to the presence of the MnO/Co heterointerfaces and Co-Nx-C species and the strong interactions between both compounds. Moreover, the small nanoparticle size leads to a higher number of active sites available for the reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.