Abstract

Imidacloprid is the most widely used neonicotinoid insecticide and has been reported to pose a threat to ecological security and human health. Therefore, simple-to-operate and highly sensitive methods for the detection of trace levels of imidacloprid are necessary. Here, we isolated two phage-borne peptides that compete with imidacloprid to bind the monoclonal antibody (mAb) 3D11 from phage display peptide libraries. A phage-enzyme-linked immunosorbent assay (P-ELISA) and two phage time-resolved fluoroimmunoassays (P-TRFIAs) for the detection of imidacloprid were developed using the phage-borne peptides as substitutes for chemically synthesized antigens. After systematic optimization, the half-maximum inhibition concentrations (IC50) of the P-ELISA, P-TRFIA-1, and P-TRFIA-2 were 0.067 ng mL−1, 0.085 ng mL−1, and 0.056 ng mL−1, respectively. Based on their IC50 values, the sensitivities of the P-ELISA and P-TRFIAs were more than four times greater than those of previous immunoassays. Additionally, the immunoassays showed satisfactory recovery in the detection of spiked samples and good correlation with high performance liquid chromatography (HPLC) for the detection of samples containing incurred residues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call