Abstract

W-Mo/Mo-V/V-W co-doped TiO2 photocatalyst for the effective degradation of MB (methylene blue) dye under sunlight irradiation was successfully prepared by one-step Plasma Electrolytic Oxidation (PEO) process. The XRD, XPS, and EDS results revealed that W/Mo/V were co-doped in the TiO2 lattice. The highest redshift in the light absorption edge is recorded for the sample MV (Mo-V co-doped TiO2) with a bandgap of 2.51 eV, whereas the bandgaps for WM (W-Mo co-doped TiO2) and VW (V-W co-doped TiO2) are recorded as 2.96 eV and 2.58 eV, respectively. The co-doped photocatalysts show a typical PEO structure with a high degree of porosity favouring the dye adsorption ability. EIS, LSV, and PL analysis confirmed that the co-doped coatings pose a high degree of charge separation, suppressed charge carriers' recombination, and increased the ability to produce photocurrent. Under direct sunlight irradiation, the sample MV showed the highest photocatalytic efficiency, confirmed by MB dye degradation, then the other co-doped and undoped TiO2. This can be attributed to the synergetic effects of intense visible light absorption in the solar spectrum and the reduced charge carriers' recombination rate by acting as the trapping sites for photogenerated electrons and holes. Finally, this immobilised co-doped photocatalyst developed by the PEO process is a promising system in the quest to establish a renewable energy-assisted strategy for textile wastewater treatment application. • Developed direct sunlight active W-Mo/Mo-V/V-W co-doped TiO 2 on Cp-Ti by PEO. • Mo-V co-doped TiO 2 (Eg of 2.41 eV) shows the highest redshift in light absorption. • Immobilised Mo-V co-doped TiO 2 shows the highest dye degradation and mineralisation. • Low Eg and e + /h − recombination rate is due to the synergetic effect of V and Mo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call