Abstract

Membrane Contactor (MC) is a well-known membrane technology to provide significant advantages required by industries. For MC, a hydrophobic membrane required as a barrier so that liquid absorbent and flue gaseous do not disperse with one another. However, the major concern in hydrophobic membrane is getting swelling by liquid after a short operating period. To minimize the swelling, this study focused on the exploration on membrane fabrication by Thermally Induced Phase Separation (TIPS). As the immersion in solvents is one of the important step to extract the diluent from membranes pores, the effect of the immersion in methanol was studied. The productions of hydrophobic microporous flat sheets were accomplished by using isotactic Polypropylene (iPP) and two type diluents: Dipenyl Ether (DPE) and Methyl Salicylate (MS). The measurement of hydophobicity of membranes produced was conducted by Test System of JY-82 Video Contact Instrument. Membranes produced were characterized by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The highest hydrophobicity obtained were 124°(three hours immersed in methanol) and 107° (two hours immersed in methanol) by DPE and MS respectively. All membranes show spherical pores, indicating that membranes were formed via liquid-liquid TIPS and strong bond alkane group by Infrared (IR) spectras show that the membranes produce did not change when undergo TIPS process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call