Abstract

Fungal mycelium is emerging as a source for sustainable bio-based materials. Fungal biomass of Aspergillus oryzae was prepared by cultivation on bread waste hydrolysate to valorize this abundant food waste. Chitin-glucan-rich alkali-insoluble material (AIM) was isolated from fungal biomass, formed into hydrogels, and wet spun into monofilaments. AIM in the form of fungal microfibers containing 0.09 g polymer of glucosamine (GlcN)/g AIM was subjected to freeze–thaw and deacetylation treatments to increase the amount of GlcN. The GlcN fraction was 0.19 and 0.34 g polymer of GlcN/g AIM, for AIM subjected to deacetylation (AIM-DAC) and freeze–thaw cycles and deacetylation (AIM-FRTH-DAC), respectively. The increased GlcN fraction enabled the formation of hydrogels via the protonation of amino groups after the addition of lactic acid. Morphological differences in the hydrogels included aggregation of the fungal microfibers in the AIM-DAC hydrogel, whereas the microfibers in the AIM-FRTH-DAC hydrogel had a porous and interconnected network. Rheological assessment revealed shear thinning behavior and gel properties of the produced hydrogels. Wet spinning of the hydrogels resulted in monofilaments with tensile strengths of up to 70 MPa and 12 % elongation at break. This demonstrates promising avenues for biomaterial development from fungal cell walls containing chitin-glucan via food waste valorization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.