Abstract

Autonomous underwater vehicles (AUVs) are susceptible to non-line-of-sight (NLOS) errors and noise bias at receiving stations during the application of hydroacoustic localization systems, leading to a degradation in positioning accuracy. To address this problem, this paper optimizes the Chan-Taylor algorithm. Initially, we propose the Weighted Modified Chan-Taylor (WMChan-Talor) algorithm, which introduces dynamic weights into the Chan algorithm to correct noise variance at measurement stations, thereby improving the accuracy of AUV positioning. Computer simulations validate the effectiveness of the WMChan-Taylor algorithm in enhancing positioning accuracy. To further address the accuracy degradation caused by noise deviations across different receiving stations, we introduce an error-corrected WMChan-Taylor algorithm. This algorithm utilizes a standard residual function to eliminate significant delays caused by large errors at receiving stations and applies standard residual weighting to improve the combined positioning solution. The performance of the error-corrected WMChan-Taylor algorithm is demonstrated through both computer and semi-physical simulation experiments, confirming its capability to isolate noisier stations and thus enhance overall positioning accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.