Abstract

Polybenzoxazines (Pbzs) are a recently developed class of thermosetting polymeric materials possessing low surface free energy with nonfluorine or nonsilicon content. In the present study, a new type of Pbz-BN/TiO2 composite was fabricated using benzoxazine monomer bis(6-phenyl diazenyl-3-phenoxy-3,4-dihydro-2H-1,3-benzoxazinyl) benzonitrile and inorganic TiO2 fillers by a simple and inexpensive process. The thermal curing method was found to be effective for preparing superhydrophobic surfaces combining low surface energy and surface roughness. The presence of the benzonitrile group in the benzoxazine monomer paves the way for accelerating the curing of the benzoxazine monomer, as shown by the DSC analysis. The as-prepared Pbz/TiO2 surfaces containing 5 wt% of TiO2 generated a superhydrophobic surface exhibiting a static water contact angle (SWCA) of 146°. In addition, the effect of inorganic fillers on the thermal, mechanical and dielectric properties of the Pbz/TiO2 composites was investigated in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.