Abstract
Hybrid nanoparticles have gained a lot of attention due to their advantageous properties and versatility in pharmaceutical applications. In this perspective, the formation of novel systems and the exploration of their characteristics not only from a physicochemical but also from a biophysical perspective could promote the development of new nanoplatforms with well-defined features. In the current work, lipid/copolymer bilayers were formed in different lipid to copolymer ratios and examined via differential scanning calorimetry as a preformulation study to decipher the interactions between the biomaterials, followed by nanostructure preparation by the thin-film hydration method. Physicochemical and toxicological evaluations were conducted utilizing light scattering techniques, fluorescence spectroscopy, and MTS assay. 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) in different weight ratios were the chosen lipids, while a linear random copolymer with pH- and thermoresponsive properties comprised of oligo (ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(diisopropylamino) ethyl methacrylate (DIPAEMA) in different ratios was used. According to our results, non-toxic hybrid nanosystems with stimuli-responsive properties were successfully formulated, and the main parameters influencing their overall performance were the hydrophilic/hydrophobic balance, lipid to polymer ratio, and more importantly the random copolymer topology. Hopefully, this investigation can promote a better understanding of the factors affecting the behavior of hybrid systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.