Abstract

The article proposes a variant of the rheological model of hot deformation – the law of hyperbolic sine, which, in contrast to the standard one, takes into account not only the strain rate and process temperature, but also the strain ratio. Material constants included in the law of hyperbolic sine are replaced by polynomial functions of the strain ratio with coefficients calculated using the corresponding method developed. The paper describes applications of the rheological model proposed in low-density aluminum-lithium alloys 1424 of the Al–Mg–Li–Zn system and V-1461 of the Al–Cu–Li–Zn system, for which flow curves in the temperature range 400–480 °C and strain rate range 1–60 s–1 up to a strain ratio of 0.6 are defined by physical simulation at the Gleeble 3800 unit. The influence of the initial material state was also investigated – samples were taken from both the ingot and hot-rolled plates. Constants were determined for the rheological model of hot deformation including the Zener–Hollomon parameter and the law of hyperbolic sine for the entire range of stresses and strains. After approximating the dependences of the model parameters on true strains with a 4th degree polynomial law, a rheological model was created that describes the alloy behavior in the temperature-rate range under study. The features of changes in hyperbolic sine law parameters depending on the strain ratio were established. It was shown that, in general, parameters for the cast material are higher than for the rolled one. A comparison between the standard and proposed models showed that the use of the standard model over the entire strain interval leads to too high flow stress values (up to 12 %).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.