Abstract

AbstractAchieving both light-weight and high-strength cementitious composites (HSLWCCs) is challenging. In this study, hollow glass microspheres (HGMs) were used to develop a HSLWCC. Different amounts of HGMs were incorporated in the cement mixture and the associated effects on the engineering properties and microstructure were investigated. The results showed that the density and strength decreased with increasing HGM content. Compressive strength of the HSLWCC decreased significantly when the HGM content increased from 30 to 40% and decreased slightly with further increasing HGM content, while the density generally reduced linearly with increasing HGM content. Structural efficiency of the HSLWCC increased when the HGM content was 30% and then decreased significantly at HGM content of 40%. In particular, a floatable cementitious composite with a density of ~970 kg/m3 and compressive strength of ~31 MPa was developed by incorporating 60% of HGMs. Additionally, two failure modes (i.e., (i) debonding of interface and (ii) crush of HGM) were found in the high-strength light-weight cementitious composite (HSLWCC), with the former dominating in HSLWCC with high HGM content and the later dominating in HSLWCC with low HGM content.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.