Abstract
In recent years, the research of flexible sensors has become a hot topic in the field of wearable technology, attracting the attention of many researchers. However, it is still a difficult challenge to prepare low-cost and high-performance flexible sensors by a simple process. Three-dimensional spacer fabric (SF) are the ideal substrate for flexible pressure sensors due to its good compression resilience and high permeability (5747.7 mm/s, approximately 10 times that of cotton). In this paper, Thermoplastic polyurethane/Polypyrrole/Polydopamine/Space Fabric (TPU/PPy/PDA/SF) composite fabrics were prepared in a simple in-situ polymerization method by sequentially coating polydopamine (PDA) and Polypyrrole (PPy) on the surface of SF, followed by spin-coating of different polymers (thermoplastic polyurethane (TPU), polydimethylsiloxane (PDMS) and Ecoflex) on the PPy/PDA/SF surface. The results showed that the TPU/PPy/PDA/SF pressure sensors prepared by spin-coating TPU at 900 rpm at a concentration of 0.3 mol of pyrrole monomer (py) and a polymerization time of 60 min have optimum sensing performance, a wide working range (0–10 kPa), high sensitivity (97.28 kPa−1), fast response (60 ms), good cycling stability (>500 cycles), and real-time motion monitoring of different parts of the body (e.g., arms and knees). The TPU/PPy/PDA/SF piezoresistive sensor with high sensitivity on a highly permeable spacer fabric base developed in this paper has promising applications in the field of health monitoring.
Highlights
In recent years, flexible wearable pressure sensors have attracted widespread research interest due to their great potential for human activity detection, human-computer interaction interfaces, medical health testing, and artificial electronic skin [1,2]
The results show that the spacer fabric (SF)-X fabric has greater stress in the entire strain range, which further proves that the SF-X fabric can provide a wider working range for the pressure sensor
A thermoplastic polyurethane (TPU)/PPy/PDA/SF composite fabric piezoresistive sensor with high permeability, high sensitivity, and stable sensing performance was successfully prepared using in situ polypyrrole coating and impregnated spin-coated TPU
Summary
Flexible wearable pressure sensors have attracted widespread research interest due to their great potential for human activity detection, human-computer interaction interfaces, medical health testing, and artificial electronic skin [1,2]. Flexible pressure sensors were prepared, and the measurement accuracy of the sensors could reach about 20 kPa−1 for medical health monitoring and wearable electronics. Fernandez et al [2] prepared Fe/Ni high-sensitivity pressure sensors based on the giant magneto-impedance (GMI) effect, using COC as a substrate and magnetron sputtering deposition method, with sensitivity up to 1 Ω/Pa at 0–1 Pa; Melzer et al [20] constructed high-sensitivity giant magneto resistive (GMR) sensor elements on ultrathin 1.4 mm PET foil, which can be uniaxially or biaxially stretched on elastic support with strain up to 270% and withstand more than 1000 cycles without fatigue, and can be used in soft robotics, medical health monitoring, and electronic skin fields. Lu et al [21] developed a highly sensitive interlocking piezoresistive sensor based on an ultrathin ordered nanocone array film using the template method, which exhibited a pressure range of 0–200 Pa range exhibited a high sensitivity of 268.36 kPa−1, an ultra-low detection limit of 0.98 Pa, a fast response time of 48 ms, and a recovery time of 56 ms
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.