Abstract

We have developed a high-sensitivity near-infrared (NIR) optical imaging system for noninvasive cancer detection based on the molecular-labeled fluorescent contrast agents. Recent developments in molecular beacons offer a way to selectively tag various precancer and cancer signatures and provide high tumor-to-background contrast. Near-infrared imaging can deeply probe tissue up to a couple of centimeters; thus, it possesses the potential for noninvasive detection of breast or lymph node cancer. A phase cancellation (in- and antiphase) device is used to increase the sensitivity in detecting fluorescent photons and the accuracy of tumor localization. The optoelectronic system consists of the laser diode sources, fiber optics, interference filter (to select the fluorescent photons), and the high-sensitivity photon detector (photomultiplier tube). The source-detector pair scans the tissue surface in multiple directions, and the localization image can be obtained by angular back-projection reconstruction. Simulations and experimental data demonstrated the feasibility of detection and localization offluorescent object embedded inside the highly scattering media. Tumor-bearing mouse model with injection of fluorescent contrast agents is used to simulate the human breast tumor labeled with molecular beacons. The system can detect fluorescent contrast agents as small as one nanomole at the depth of three centimeters, with a three-millimeter localization error. This instrument has the potential for tumor diagnosis and imaging, and the accuracy of the localization suggests that this system could help guide the clinical fine-needle biopsy. Also, this portable device would be complementary to x-ray mammography and provide add-on information on early diagnosis and localization of breast tumor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call