Abstract

The electron spin resonance (ESR) system which covers the magnetic field region up to 16 T, the quasicontinuous frequency region from 60 to 700 GHz, the temperature region from 1.8 to 4.2 K, and the hydrostatic pressure region up to 1.1 GPa has been developed. This is the first pulsed high-field and multifrequency ESR system with the pressure region over 1 GPa as far as we know. Transmission ESR spectra under hydrostatic pressure can be obtained by combining a piston-cylinder-type pressure cell and the pulsed magnetic field ESR apparatus. The pressure cell consists of a NiCrAl cylinder and sapphire or zirconia inner parts. The use of sapphire or zirconia as inner parts enables us to observe ESR under pressure because these inner parts have high transmittance for the electromagnetic wave with millimeter and submillimeter wavelengths. We have successfully applied this system for the pressure dependence measurements of an isolated spin system NiSnCl(6)6H(2)O up to 1.1 GPa. It was found that the single ion anisotropy parameter D of this compound strongly depends on pressure. The parameter D is approximately proportional to the pressure up to 0.75 GPa, and the relation between D and the pressure can be used for the pressure calibration of this high-field and high-pressure ESR system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.