Abstract

A high-performance liquid chromatographic (HPLC) fingerprint of Chinese Angelica (CA) was developed basing on the consistent chromatograms of 40 CA samples ( Angelica sinensis (Oliv.) Diels). The unique properties of this HPLC fingerprints were validated by analyzing 13 related herbs including 4 Japanese Angelicae Root samples (JA, A. acutiloba Kitagawa and A. acutiloba Kitagawa var. sugiyame Hikino), 6 Szechwan Lovage Rhizome samples (SL, Ligusticum chuanxiong Hort.) and 3 Cnidium Rhizome samples (CR, Cnidium officinale Makino). Both correlation coefficients of similarity in chromatograms and relative peak areas of characteristic compounds were calculated for quantitative expression of the HPLC fingerprints. The amount of senkyunolide A in CA was less than 30-fold of that in SL and CR samples, which was used as a chemical marker to distinguish them. JA was easily distinguished from CA, SL and CR based on either chromatographic patterns or the amount of coniferyl ferulate. No obvious difference between SL and CR chromatograms except the relative amount of some compounds, suggesting that SL and CR might have very close relationship in terms of chemotaxonomy. Ferulic acid and Z-ligustilide were unequivocally determined whilst senkyunolide I, senkyunolide H, coniferyl ferulate, senkyunolide A, butylphthalide, E-ligustilide, E-butylidenephthalide, Z-butylidenephthalide and levistolide A were tentatively identified in chromatograms based on their atmospheric pressure chemical ionization (APCI) MS data and the comparison of their UV spectra with those published in literatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.