Abstract
High performance detector technology is being developed for sensing over the mid-wave infrared (MWIR) band for NASA Earth Science, defense, and commercial applications. The graphene-based HgCdTe detector technology involves integration of graphene with HgCdTe photodetectors allowing higher performance detection over 2-5 μm compared with photodetectors using only HgCdTe material. The graphene layer functioning as a high mobility channel reduces recombination of photogenerated carriers in the detector to further enhance performance. Graphene bilayers on Si/SiO2 substrates have been doped with boron using a spin-on dopant (SOD) process. The p-doped graphene is then transferred onto HgCdTe substrates for high mobility layers in MWIR photodetectors. Various characterization techniques including Raman spectroscopy and secondary-ion mass spectroscopy (SIMS) have analyzed dopant levels and properties of the graphene throughout various stages of development to qualify and quantify the graphene doping and transfer. The objective of this work is demonstration of graphene-based HgCdTe room temperature MWIR detectors and arrays through modeling, material development, and device optimization. The primary driver for this technology development is enablement of a scalable, low cost, low power, and small footprint uncooled MWIR sensing technology capable of measuring thermal dynamics with better spatial resolution for applications such as remote sensing and earth observation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.