Abstract

Runge–Kutta–Nyström (RKN) methods are extensively used to obtain approximate solutions of ordinary differential equations (ODEs). Specifically, they are widely used to directly solve second-order ODEs of the special form. Although the derivation of new higher-order methods with fewer numbers of function evaluations is of great importance in increasing the precision and effectiveness of the methods, however, this is rarely done due to the difficulty or complexity of some derivations. This study focuses on constructing a 7(5) pair of embedded multi-step Runge–Kutta–Nyström (EMSN) method with lower stages for the numerical solutions of special second-order ODEs. An adaptive step size formulation using an embedded procedure is considered, and the numerical findings reveal that the new embedded pair outperforms existing Runge–Kutta (RK) pairs in terms of the minimum number of functions evaluations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.