Abstract
A room temperature (28°C) functional SnO2 supported ZnO (SnO2@ZnO) heterostructure based chemiresistor has been fabricated for sensing low-trace of ammonia (5–35 ppm). The decoration of SnO2 nanospheres on ZnO has been done via low-cost hydrothermal technique. The surface morphological examination done by FE-SEM reiterate the decoration of SnO2 nanospheres on the surface of ZnO. The Rietveld refinement for structural analysis of SnO2@ZnO heterostructure confirmed that both ZnO and SnO2 phases structures are present in prepared SnO2@ZnO. At lowermost concentration of 5 ppm, the sensor response of SnO2@ZnO heterostructure was 25.48 and for the maximum concentration of 35 ppm it was 159.16. The quick response and recovery time at 5 ppm were observed to be 4.05 s and 6.74 s, respectively. The response heightening supported the efficient fabrication of n-n heterojunction between the surface of ZnO and SnO2 spheres, resulting in the improved sensing performance. Also, the SnO2@ZnO chemiresistor verified high long-term stability and selectivity to ammonia as compared to other interfering gases such as methanol, ethanol, aniline, and toluene. This work opens a novel window for the development of devices that are room temperature operatable, highly sensitive and selective for quick detection of ammonia gas for its commercialization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.