Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is a major public health concern that has highlighted the need to monitor circulating strains to better understand the coronavirus disease 2019 (COVID-19) pandemic. This study was carried out to monitor SARS-CoV-2 RNA and its variant-specific mutations in wastewater using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). One-step RT-qPCR using the SARS-CoV-2 Detection RT-qPCR Kit for Wastewater (Takara Bio), which amplified two N-gene regions simultaneously using CDC N1 and N2 assays with a single fluorescence dye, demonstrated better performance in detecting SARS-CoV-2 RNA (positive ratio, 66 %) compared to two-step RT-qPCR using CDC N1 or N2 assay (40 % each, and 52 % when combined), with significantly lower Ct values. The one-step RT-qPCR assay detected SARS-CoV-2 RNA in 59 % (38/64) of influent samples collected from a wastewater treatment plant in Japan between January 2021 and March 2022. The correlation between the concentration of SARS-CoV-2 RNA in the wastewater and the number of COVID-19 cases reported each day for 7 days pre- and post-sampling was significant (p < 0.05, r = 0.76 ± 0.03). Thirty-one influent samples which showed two-well positive for SARS-CoV-2 RNA were further tested by six mutations site-specific one-step RT-qPCR (E484K, L452R, N501Y, T478K, G339D, and E484A mutations). The N501Y mutation was detected between March and June 2021 but was replaced by the L452R and T478K mutations between July and October 2021, reflecting the shift from Alpha to Delta variants in the study region. The G339D and E484A mutations were identified in January 2022 and later when the incidence of the Omicron variant peaked. These findings indicate that wastewater-based epidemiology has the epidemiological potential to complement clinical tests to track the spread of COVID-19 and monitor variants circulating in communities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.