Abstract
Pyrometallurgical reprocessing technology is currently being focused in many countries for closing actinide fuel cycle because of its favorable economic potential and an intrinsic proliferation-resistant feature due to the inherent difficulty of extracting weapons-usable plutonium. The feasibility of pyrometallurgical reprocessing has been demonstrated through many laboratory scale experiments. Hence the development of the engineering technology necessary for pyrometallurgical reprocessing is a key issue for industrial realization. The development of high-temperature transport technologies for molten salt and liquid cadmium is crucial for pyrometallurgical processing; however, there have been very few transport studies on high-temperature fluids. In this study, a salt transport test rig was installed in an argon glove box with the aim of developing technologies for transporting molten salt at approximately 773 K. The gravitation transport of the molten salt at approximately 773 K could be well controlled at a velocity from 0.1 to 1.2 m/s by adjusting the valve. Consequently, the flow in the molten salt can be controlled from laminar flow to turbulent flow. It was demonstrated that; using a centrifugal pump, molten salt at approximately 773 K could be transported at a controlled rate from 2.5 to 8 dm3/min against a 1 m head.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.