Abstract

Recently, the aviation, shipping, and energy industries have been using components that are more thin-walled. Deformations occurring during the cutting of these thin-walled components could lead to dimensional errors. This paper describes a finite element method that requires fewer processes and less processing time than other methods, developed to predict the deformation of workpieces during their cutting. Using this method in conjunction with cutting simulations allows for the analysis of workpiece deformations through the modification of stiffness matrices containing information from cutting simulations, rather than recreating meshes or stiffness matrices. Moreover, part of the processing makes use of an accelerated method of solving simultaneous equations using large scale parallel computations with GPU.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call