Abstract

Hydrogel-coated metallic stents may provide supplementary functions such as local drug delivery and gene transfer in addition to mechanical dilation function. To this end, we used a photoreactive material consisting of gelatin macromer (multiple styrene-derivatized gelatin) and carboxylated camphorquinone (photo-initiator). A few minutes of visible light irradiation of a stent after dip-coating of an aqueous solution of the photoreactive material resulted in the formation of a homogeneously crosslinked gelatinous layer on the entire exterior surface of the stent. As the metal stent, gold stents under development were used. Rhodamine-conjugated albumin as a model drug or adenoviral vector expressing bacterial beta-galactosidase (AdLacZ) as a model gene were photo-immobilized in the gelatinous gel layer. In vitro experiments using hybrid tubular tissue, which is a self-shrinkaged, vascular smooth muscle cell-incorporated type-I collagen gel, as a vascular model, showed that the immobilized dye-derivatized albumin was released on and permeated into tissues, as observed by confocal laser microscopy, and that the cells transfected with immobilized AdLacZ produced beta-galactosidase up to almost 3 weeks, as observed by x-gal staining. In preliminary in vivo experiments these drug- or adenovirus-immobilized stents were implanted in rabbit common carotid arteries. Within 3 weeks of implantation, drug permeation and gene expression in the vascular tissues were observed, indicating that the gelatinous photogel effectively serves as a matrix or coating for a bioactive stent,which permits drug release as well as gene transfer. This intraluminal approach has the potential to realize drug and gene therapy in atherosclerotic plaque.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call