Abstract

Pulse laser grinding (PLG), an edge-shaping process, was developed previously to implement high-performance cutting tools. In this study, two femtosecond (fs) lasers with wavelengths of 1045 nm and 257 nm were used to conduct PLG on chemical vapor deposited (CVD) diamond-coated tool edges, as the fs laser is reported to have less thermal impact and the potential to improve the material crystallinity. We investigated the effects of the laser parameters on the tool edge formation and microstructural changes. The results show that although the infrared fs laser could – compared to the conventional nanosecond (ns)-laser PLG – naturally suppress surface thermal damage, the roughness of the processed surface remained relatively high with an Rz of 0.21 μm. However, under the optimal laser parameters proposed in this paper, an ultraviolet fs-laser PLG was used to obtain a much smoother edge, reducing Rz to approximately 0.08 μm. Moreover, scanning electron microscopy images indicated that the longitudinal machining marks on the ns-laser-processed surface were significantly reduced, with virtually no attached debris on the surface. Furthermore, from the Raman spectra, a significant increase in the diamond peak intensity was observed, indicating that the crystallinity of the CVD diamond (CVDD) was improved following ultraviolet-fs-laser PLG. These results demonstrate that edge shaping and structural modification of polycrystalline CVDDs can be integrated into ultraviolet-fs-laser PLG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.