Abstract

To develop digital twin (DT) of road infrastructure, one critical element is computation of pavement responses (strains, stresses, and deflections) under traffic and environmental loading. This study aims to develop high-efficient asphalt pavement modeling software based on semi-analytical finite element method (SAFEM) for DT application. The algorithms address important aspects in vehicle-tire-pavement interaction modeling, such as dynamic vehicular loading, three-dimensional (3-D) non-uniform tire contact stress, viscoelastic behavior of asphalt material, and interface bonding condition. The simulation accuracy is verified by comparison with full-scale test and field measurements, and the relative differences are around 5 % to 20 %. Techniques including optimized discrete Fourier transform, parallel computing, graphics processing unit (GPU) acceleration, and sparse matrices are implemented for computation efficiency. As compared to the traditional 3-D FEM, SAFEM shows significant savings in computation time and storage usage. The high efficiency and accuracy make the software full of potential to be applied for DT of roadway infrastructure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.