Abstract

High area loading of sulfur is a critical parameter to achieve high energy-density Li-S battery. Interface properties between electrode and electrolyte play an important role in these batteries. Sulfur species dissolution, precipitation and phase transformation during the charge and discharge process strongly affect the performance of lithium sulfur (Li-S) batteries. In this work, we examine the chemical functionalities and electrode structures that are important to stabilize sulfur electrode. As an example, binders with different functionalities, which differs both in chemical and electrical properties, are employed to modify the interface between the conductive matrix and electrolyte. The phase transformation of sulfur species at this interface is studied in detail. Remarkable differences are observed among sulfur cathodes with different binders modified interface. More solid-phase sulfur species precipitation is observed with binders that have strong affiliate functional groups, like poly(9, 9-dioctylfluorene-co-fluorenone-co-methylbenzoic ester) (PFM) and poly(vinylpyrrolidone) (PVP), in both fully charged and discharged states. Also, the improved conductivity from introducing conductive binders greatly promotes sulfur species precipitation. These findings suggest that the contributions from functional groups affinity and binder conductivity lead to more sulfur transformation into the solid phase, so the shuttle effect can be greatly reduced, and higher sulfur area loading and better cycling stability can be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.