Abstract

Context Amylose is a type of resistant starch with numerous health benefits and industrial applications. Starch from maize (Zea mays L.) usually has an amylose content of ~25%. Aims The aim was to develop high-amylose maize genotypes suitable for human consumption and adapted to Indian conditions. Methods Marker-assisted backcross breeding was used to transfer the mutant ae1 allele from a high-amylose donor from the USA into the three parents (HKI 1344, HKI 1378, HKI 1348-6-2) of two high-yielding white maize hybrids (HM5 and HM12) grown in India. Key results In converted lines, amylose content was 40.40–58.10% of total kernel starch, compared with 22.25–26.39% in parents. The percentage increase in amylose content was 63.70–153.03%. There was a significant amount of background recovery in each backcross generation: 66.80–79% in BC1F1, 72.85–88.60% in BC2F1, and 84.45–93.70% in BC2F2. Overall, the total kernel starch content was reduced (by ~22%) in the ae1-introgressed families. Conclusions The converted lines developed in the study are enriched with kernel amylose while showing significant background recovery. Implications The high-amylose lines developed may be highly beneficial for diabetic patients and in the bioplastics industry, and should be suitable for growing under Indian conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call