Abstract

Tissue-engineered blood vessel substitutes have been developed due to the lack of suitable small-diameter vascular grafts. Xenogeneic extracellular matrix (ECM) scaffolds have the potential to provide an ideal source for off-the-shelf vascular grafts. In this study, porcine carotid arteries were used to develop ECM scaffolds by decellularization and coating with heparin and hepatocyte growth factor (HGF). After decellularization, cellular and nucleic materials were successfully removed with preservation of the main compositions (collagen, elastin, and basement membrane) of the native ECM. The ultimate tensile strength, suture strength, and burst pressure were significantly increased after cross-linking. Pore size distribution analysis revealed a porous structure within ECM scaffolds with a high distribution of pores larger than 10 μm. Heparinized scaffolds exhibited sustained release of heparin in vitro and showed potent anticoagulant activity by prolonging activated partial thromboplastin time. The scaffolds showed an enhanced HGF binding capacity as well as a constant release of HGF as a result of heparin modification. When implanted subcutaneously in rats, the modified scaffolds revealed good biocompatibility with enzyme degradation resistance, mitigated immune response, and anti-calcification. In conclusion, heparinized and HGF-coated acellular porcine carotid arteries may be a promising biological scaffold for tissue-engineered vascular grafts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.