Abstract

An embrittled 18 Ni maraging steel rolled ring was examined and samples cut from the ring were subjected to a wide range of heat treatments including high temperature solutioning and thermal cycling. The effects of these treatments on toughness were evaluated by measuring impact energy and plain strain fracture toughness. The microstructural analyses were carried out using extensive optical and scanning electron microscopy, and scanning electron fractography. It has been established that the ring was embrittled due to the combined effects of deformed structure and grain boundary precipitation of TiC or Ti (CN). Heat treatment parameters have been devised to improve the fracture toughness and grain size of the materials affected by these two types of embrittlement. It has been suggested that toughness and grain size can be improved by (a) annealing at 1223 K followed by water quenching in the case where deterioration in toughness is marginal and is caused by nonrecrystallized grains or deformation texture, and (b) solutioning at 1473 K followed by water quenching, and thermal cycling twice between room temperature and 1198 K with a holding time of 30 min at peak temperature in the case where the loss in toughness is considerably large due to excessive grain boundary precipitation of second phase particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call