Abstract

Inkjet-printing is considered an emerging manufacturing process for developing perovskite solar cells (PSCs) with low material wastes and high production throughput. Up-to-now, all case studies on inkjet-printed PSCs are based on the exploitation of toxic solvents and/or high-molarity perovskite precursor inks that are known to enable the development of high-efficiency photovoltaics (PVs). The present study provides a new insight for developing lower-toxicity, high performance and stable (for more than 2 months) inkjet-printable perovskite precursor inks for fully ambient air processed PSCs. Using an ink composed of a green low vapor pressure noncoordinating solvent and only 0.8m of perovskite precursors, the feasibility of fabricating high-quality and with minimum coffee-ring defects, annealing-free perovskite absorbent layers under ambient atmosphere is demonstrated. Noteworthily, the PSCs fabricated using the industry-compatible carbon-based hole transport material free architecture and the proposed ink present an efficiency >13% that is considered on the performance records for the under-consideration PV architecture employing an inkjet-printed active layer. Outstanding is also found the stability of the devices under the conditions determined by the ISOS-D-1 protocol (T95 = 1000h). Finally, the perspective of upscaling PSCs to the mini-module level (100cm2 aperture area) is demonstrated, with the upscaling losses to be as low as 8.3%rel dec-1 per upscaled active area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.