Abstract

Purpose Renewable energy alternatives and nanoscale materials have gained huge attention in recent years due to the problems associated with fossil fuels. The recyclable battery is one of the recent developments to address the energy requirement issues. In this work, the development of nanoscale materials is focused on using green synthesis methods to address the energy requirements of hybrid electric vehicles. Design/methodology/approach The current research focuses on developing metal oxide nanoscale materials (NANO-SMs). The Zno-Aloe vera NANO-SM is prepared using the green synthesis method. The developed nanoscale materials are characterized using analysis methods like FESEM, TEM, XRD and FTIR. Findings The average size of ZnO-Aloe vera mono-crystalline was recorded as 60–70 nm/Hexagonal shape. The nanoscale materials are used for the detection of LPG gases. The sensitivity observed was 48%. The response time and recovery time were recorded as 8–10 s and 230–250 s, respectively. The average size of SnO2-green papaya leaves poly-crystalline was recorded as 10–20 nm/powder form. Originality/value Nanoscale materials are developed using green synthesis methods for hybrid vehicle applications. The nanoscale materials are used for the detection of harmful gases in hybrid vehicles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.