Abstract

A collaborative research project is undertaken by Anglo American Coal and CSIRO to develop appropriate strategies for gas and spontaneous combustion management of longer panels. Extensive computational fluid dynamics (CFD) modelling studies have been conducted and calibrated using operational longwall goaf gas data to obtain a fundamental understanding of goaf gas flow patterns in longwall panels of 1.0-km and 3.0-km lengths and a detailed investigation of the effect of various mining and operational parameters on goaf gas flow patterns. The modelling studies have also been used to investigate the performance of various gas drainage and proactive inertisation strategies during various stages of longwall panel extraction. Simulation results indicated that apart from tailgate (TG) side goaf holes, gas drainage from maingate (MG) goaf holes and the mid panel start-up goaf holes would be useful for flat seam field conditions. Operation of 8–10 goaf holes is recommended for field site conditions with high goaf gas emissions of 6000 L/s. The modelling results indicated that the traditional inert gas flow rate of 500 L/s currently used in some mines would be insufficient to achieve effective goaf inertisation in long panels. Results indicate that 3.0-km-long panels would require 1500 L/s of inert gas and there is a need for multi-point inert gas injection strategy for effective goaf inertisation. In this paper, details and results of modelling investigations and recommended strategies for gas and spontaneous combustion management in 1.0-km- and 3.0-km-long panels are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.