Abstract

Abstract. Gram-negative bacteria produce specific membrane lipids, i.e. 3-hydroxy fatty acids with 10 to 18 C atoms. They have been recently proposed as temperature and pH proxies in terrestrial settings. Nevertheless, the existing correlations between pH or temperature and indices derived from 3-OH FA distribution are based on a small soil dataset (ca. 70 samples) and only applicable regionally. The aim of this study was to investigate the applicability of 3-OH FAs as mean annual air temperature (MAAT) and pH proxies at the global level. This was achieved using an extended soil dataset of 168 topsoils distributed worldwide, covering a wide range of temperatures (5 to 30 ∘C) and pH (3 to 8). The response of 3-OH FAs to temperature and pH was compared to that of established branched glycerol dialkyl glycerol tetraether (GDGT)-based proxies (MBT'5Me/CBT). Strong linear relationships between 3-OH-FA-derived indices (RAN15, RAN17 and RIAN) and MAAT or pH could only be obtained locally for some of the individual transects. This suggests that these indices cannot be used as palaeoproxies at the global scale using simple linear regression models, in contrast with the MBT'5Me and CBT. However, strong global correlations between 3-OH FA relative abundances and MAAT or pH were shown by using other algorithms (multiple linear regression, k-NN and random forest models). The applicability of the three aforementioned models for palaeotemperature reconstruction was tested and compared with the MAAT record from a Chinese speleothem. The calibration based on the random forest model appeared to be the most robust. It generally showed similar trends with previously available records and highlighted known climatic events poorly visible when using local 3-OH FA calibrations. Altogether, these results demonstrate the potential of 3-OH FAs as palaeoproxies in terrestrial settings.

Highlights

  • Investigating past climate variations is essential to understand and predict future environmental changes, especially in the context of global anthropogenic change

  • The 3-OH FAs have been recently proposed as environmental proxies in terrestrial settings, based on local studies

  • This study investigated for the first time the applicability of these compounds as mean annual air temperature (MAAT) and pH proxies at the global scale using an extended soil dataset across a series of globally distributed elevation transects (n = 168)

Read more

Summary

Introduction

Investigating past climate variations is essential to understand and predict future environmental changes, especially in the context of global anthropogenic change. Direct records of environmental parameters are available for the last decades, the so-called “instrumental” period. Beyond this period, proxies can be used to obtain indirect information on environmental parameters. A major challenge is to develop reliable proxies which can be applied to continental environments in addition to marine ones. Available proxies have been mainly developed and used in marine settings as the composition and mechanism of formation of marine sedimentary cores are less complex than in continental settings, which are highly heterogeneous. Several environmental proxies based on organic (e.g. the alkenone unsaturation index (Uk37; Brassell et al, 1986) and inorganic (Mg/Ca ratio and 18O/16O ratio of foraminifera; Emiliani, 1955; Erez and Luz, 1983) fossil remains were notably developed for the reconstruction of sea surface temperatures

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.