Abstract

Geopolymer is a greener alternative cement produced from the reaction of pozzolans and strong alkali solutions. Generally, the cement industry is one of largest producers of CO2that caused global warming. For geopolymer mortar usage, Portland cement is not utilized at all. In this research, geopolymer mortars were prepared by mixing metakaolin, various wastes (fly ash, bagasse ash and rice husk ash) varied as 80:20, 50:50 and 20:80, 15M NaOH, Na2SiO3and sand. The influence of various parameters such as metakaolin to ashes ratios and pozzolans to alkali ratios on engineering properties of metakaolin blended wastes geopolymer mortar were studied. Compressive strength tests were carried out on 25 x 25 x 25 mm3cube geopolymer mortar specimens at 7, 14, 21, 28 and 91 air curing days. Physical and chemical properties were also investigated at the same times. The test results revealed that the highest compressive strength was 20% metakaolin - 80% fly ash geopolymer mortar. When the curing times increases, the compressive strength of geopolymer mortar also increases. The mixing of metakaolin and bagasse ash/rice husk ash presented lower compressive strength but higher water absorption and porosity. For FTIR results, Si-O, Al-O and Si-O-Na+were found. Moreover, the geopolymer mortar could easily plastered on the wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.