Abstract
Single nucleotide polymorphisms (SNPs) represent an important type of dynamic sites within the human genome. These common variants often locally correlate within more complex multi-SNP haploblocks that are maintained throughout generations in a stable population. Information encoded in the structure of SNPs and SNP haploblock variation can be characterized through a normalized information content metric. Genodynamics is being developed as the analogous "thermodynamics" characterizing the state variables for genomic populations that are stable under stochastic environmental stresses. Since living systems have not been found to develop in the absence of environmental influences, this paper describes the analogous genomic free energy metrics in a given environment. SNP haploblocks were constructed by Haploview v4.2 for five chromosomes from phase III HapMap data, and the genomic state variables for each chromosome were calculated. An in silico analysis was performed on SNP haploblocks with the lowest genomic energy measures. Highly favorable genomic energy measures were found to correlate with highly conserved SNP haploblocks. Moreover, the most conserved haploblocks were associated with an evolutionarily conserved regulatory element and domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of computational biology and bioinformatics research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.