Abstract

We developed a tumor control probability (TCP) model that incorporates variable time intervals between fractions and a kick-off time (Tk) for radiation-induced accelerated tumor proliferation. The resulting Lee-Rosen model, TCPLR, was used to compute TCPs for treatment courses with and without weekend treatment for tumors with different proliferation rates – slow (prostate), moderate (breast), and rapid (head and neck). TCPs were computed using ideal uniform dose distributions and actual patient plans. The doses for the uniform plans were the mean doses for the prostate and breast cases and the minimum tumor dose for the head and neck case. The TCPLR model predictions agreed with expectations that TCP increases with increasing Tk in all cases. For standard fractionation, as Tk increased from 0 to 4 weeks, TCP increased for the patient distributions by 74.7% for the head and neck cancer, by 6.2% for the breast cancer, and by 2.4% for the prostate cancers. For the uniform dose distributions, the increases were 79.2%, 5.7%, and 2.3%, respectively. TCP increased as the number of weekend breaks decreased. The effect of weekend breaks decreased as the tumor proliferation rate decreased. For the head and neck tumor, notable decreases in TCP of 6.0% (uniform dose distribution) and 6.8% (actual plan dose distribution) were observed with Friday starts compared to Monday starts for the standard 5 fx/wk schedule (Tk = 4 wk). The 7 fx/wk schedule produced increases in TCP of 17.0% and 20.5% for the uniform and patient dose distributions, respectively, compared to the standard schedule. For the breast cancer, starting the 5 fx/wk schedule on Friday decreased the TCP by 0.2% (Tk = 4 wk) compared to a Monday start. The 7 fx/wk schedule produced increases of 0.3% and 0.4% in TCP compared to the standard schedule for the uniform and patient dose distributions, respectively (Tk = 4 wk). For the prostate cancer, the change in TCP for 5 fx/wk schedules starting on different days was 0.1%. The 7 fx/wk schedule increased TCP by 0.8% compared to the standard schedule (Tk = 4 wk). TCP values for the uniform dose distributions for the standard schedule (Tk = 4 wk) agreed with the TCP values for the actual dose distributions within 4.5% for the head and neck tumor and within 0.2% for the breast and prostate tumors. This good agreement suggests that the doses chosen for the uniform dose distributions were good approximations to the clinical doses. The results for head and neck tumors support, in part, the current practice of hyperfractionated/accelerated radiotherapy. They also suggest that shortening the overall treatment time for conventional fractions by eliminating weekend breaks might be beneficial. The predicted effect on TCP of the various schedules studied was insignificant for prostate and breast tumors, suggesting that a weekend treatment might not be necessary for patients starting radiotherapy on a Friday. There is significant uncertainty in the values of the model parameters chosen for these calculations, and no consideration was given to the potential effects of these various schedules on normal tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call