Abstract
Measurements of fractional multiples of the plateau quantized Hall resistance ( ≈ 12 906 Ω) were enabled by the utilization of multiple current terminals on millimetre-scale graphene p–n junction (pnJ) devices fabricated with interfaces along both lateral directions. These quantum Hall resistance checkerboard devices have been demonstrated to match quantized resistance outputs numerically calculated with the LTspice circuit simulator. From the devices’ functionality, more complex embodiments of the quantum Hall resistance checkerboard were simulated to highlight the parameter space within which these devices could operate. Moreover, these measurements suggest that the scalability of pnJ fabrication on millimetre or centimetre scales is feasible with regards to graphene device manufacturing by using the far more efficient process of standard ultraviolet lithography.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.